Biology of Sport
eISSN: 2083-1862
ISSN: 0860-021X
Biology of Sport
Current Issue Manuscripts accepted About the journal Editorial board Abstracting and indexing Archive Ethical standards and procedures Contact Instructions for authors Journal's Reviewers Special Information
Editorial System
Submit your Manuscript
SCImago Journal & Country Rank
Share:
Share:
Original paper

The mediating effect of force and velocity changes on power output enhancement in bench press throw after submaximal isometric conditioning activity in trained males

Dawid Koźlenia
1
,
Michał Krzysztofik
2

  1. Unit of Biostructure, Faculty of Physical Education and Sport, Wroclaw University of Health and Sport Sciences
  2. Institute of Sport Sciences, Jerzy Kukuczka Academy of Physical Education in Katowice, Poland
Biol Sport. 2025;42(2):13–19
Online publish date: 2024/08/30
Article file
- 2_04031_Article.pdf  [0.29 MB]
Get citation
 
PlumX metrics:
 
1. Boullosa D. Post-activation performance enhancement strategies in sport: a brief review for practitioners. Hum Mov. 2021; 22(3):101–109. doi:10.5114/hm.2021 .103280.
2. Blazevich AJ, Babault N. Post-activation potentiation versus post-activation performance enhancement in humans: historical perspective, underlying mechanisms, and current issues. Front Physiol. 2019; 10:1359. doi:10.3389 /fphys.2019.01359.
3. Rodrigues P, Trajano GS, Stewart IB, Minett GM. Potential role of passively increased muscle temperature on contractile function. Eur J Appl Physiol. 2022; 122:2153–2162. doi:10.1007 /s00421-022-04991-7.
4. Rassier DE, Macintosh BR. Coexistence of potentiation and fatigue in skeletal muscle. Braz J Med Biol Res. 2000; 33:499–508.
5. Morin JB, Samozino P. Interpreting Power-Force-Velocity Profiles for Individualized and Specific Training. Int J Sports Physiol Perform. 2016; 11(2):267–272. doi:10.1123/ijspp .2015-0494.
6. Jiménez-Reyes P, Samozino P, Brughelli M, Morin JB. Effectiveness of an Individualized Training Based on Force-Velocity Profiling during Jumping. Front Physiol. 2017; 7:677. doi:10.3389/fphys.2016.00677.
7. Seitz LB, Haff GG. Factors Modulating Post-Activation Potentiation of Jump, Sprint, Throw, and Upper-Body Ballistic Performances: A Systematic Review with Meta-Analysis. Sports Med. 2016; 46(2):231–240. doi:10.1007/s40 279-015-0415-7.
8. Tillin NA, Bishop D. Factors modulating post-activation potentiation and its effect on performance of subsequent explosive activities. Sports Med. 2009; 39(2):147–166. doi:10.2165/0000 7256-200939020-00004.
9. Hodgson M, Docherty D, Robbins D. Post-activation potentiation: underlying physiology and implications for motor performance. Sports Med. 2005; 35(7):585–595. doi:10.2165/0000 7256-200535070-00004.
10. Cormie P, McGuigan MR, Newton RU. Developing maximal neuromuscular power: part 2 – training considerations for improving maximal power production. Sports Med. 2011; 41(2):125–146. doi:10.2165/11538500-000000000 -00000.
11. Enoka RM. Neuromechanics of human movement. Human kinetics, 2008.
12. Wilson JM, Duncan NM, Marin PJ, et al. Meta-analysis of postactivation potentiation and power: effects of conditioning activity, volume, gender, rest periods, and training status. J Strength Cond Res. 2013; 27(3):854–859. doi:10.1519/JSC .0b013e31825c2bdb.
13. Esformes JI, Keenan M, Moody J, Bampouras TM. Effect of different types of conditioning contraction on upper body postactivation potentiation. J Strength Cond Res. 2011; 25(1):143–148. doi: 10.1519/JSC.0b013e3181fef7f3.
14. Gilmore SL, Brilla LR, Suprak DN, Chalmers GR, Dahlquist DT. Effect of a high-intensity isometric potentiating warm-up on bat velocity. J Strength Cond Res. 2019; 33(1):152–158. doi:10 .1519/JSC.0000000000002855.
15. Baron RM, Kenny DA. The moderatormediator variable distinction in social psychological research: conceptual, strategic, and statistical considerations. J Pers Soc Psychol. 1986; 51:1173–1182.
16. Domaradzki J, Popowczak M, Zwierko T. The mediating effect of change of direction speed in the relationship between the type of sport and reactive agility in elite female team-sport athletes. J Sports Sci Med. 2021; 20(4):699.
17. Lum D, Soh SK, Teo CJH, Wong OQH, Lee MJC. Effects of Performing Isometric Bench Press Training at Single Versus Multiple Joint Positions on Strength and Power Performance. Int J Sports Physiol Perform. 2022; 17(7):1061–1069. doi:10.1123/ijspp.2021-0461.
18. Choon NG, Chen SE, Lum D. Inducing postactivation potentiation with different modes of exercise. Strength Cond J. 2020; 42(2):63–81.
19. Oranchuk DJ, Storey AG, Nelson AR, Cronin JB. Isometric training and long-term adaptations: Effects of muscle length, intensity, and intent: A systematic review. Scand J Med Sci Sports. 2019; 29(4):484–503. doi:10.1111/sms .13375.
20. Vargas-Molina S, Salgado-Ramírez U, Chulvi-Medrano I, et al. Comparison of post-activation performance enhancement (PAPE) after isometric and isotonic exercise on vertical jump performance. PLoS One. 2021; 16(12):e0260866. doi:10.1371/journal .pone.0260866.
21. Finlay MJ, Bridge CA, Greig M, Page RM. Upper-body post-activation performance enhancement for athletic performance: a systematic review with meta-analysis and recommendations for future research. Sports Med. 2022; 52(4):847–871.
22. Schaefer LV, Bittmann FN. Paired personal interaction reveals objective differences between pushing and holding isometric muscle action. PLoS One. 2021; 16(5):e0238331. Published 2021 May 6. doi:10.1371/journal.pone .0238331.
23. Barclay CJ. Energy demand and supply in human skeletal muscle. J Muscle Res Cell Motil. 2017; 38(2):143–155. doi:10.1007/s10974-017-9467-7.
24. Martínez-Cava A, Hernández-Belmonte A, Courel-Ibáñez J, Morán-Navarro R, González-Badillo JJ, Pallarés JG. Reliability of technologies to measure the barbell velocity: Implications for monitoring resistance training. PLoS One. 2020; 15(6):e0232465. doi:10.1371 /journal.pone.0232465.
25. García-Ramos A, Pestaña-Melero FL, Pérez-Castilla A, Rojas FJ, Haff GG. Mean velocity vs. mean propulsive velocity vs. peak velocity: which variable determines bench press relative load with higher reliability?. J Strength Cond Res. 2018; 32(5):1273–1279.
26. Signore N. Calculating a one-rep max. In: Velocity-Based Training: How to Apply Science, Technology, and Data to Maximize Performance. Champaign, IL: Human Kinetics, 2021. pp. 73–74.
27. Wilk M, Golas A, Zmijewski P, et al. The Effects of the Movement Tempo on the One-Repetition Maximum Bench Press Results. J Hum Kinet. 2020; 72:151–159. Published 2020 Mar 31. doi:10.2478/hukin-2020-0001.
28. Soriano MA, Suchomel TJ, Marín PJ. The Optimal Load for Maximal Power Production During Upper-Body Resistance Exercises: A Meta-Analysis. Sports Med. 2017; 47(4):757–768. doi:10.1007/s40279-016-0626-6.
29. Wilk M, Golas A, Krzysztofik M, Nawrocka M, Zajac A. The Effects of Eccentric Cadence on Power and Velocity of the Bar during the Concentric Phase of the Bench Press Movement. J Sports Sci Med. 2019 Jun 1; 18(2):191–197. PMID: 31191087; PMCID: PMC654 3996.
30. Krzysztofik M, Wilk M. The Effects of Plyometric Conditioning on Post-Activation Bench Press Performance. J Hum Kinet. 2020; 74:99–108. doi:10.2478/hukin-2020 -0017.
31. Krzysztofik M, Wilk M, Golas A, Lockie RG, Maszczyk A, Zajac A. Does Eccentric-only and Concentric-only Activation Increase Power Output? Med Sci Sports Exerc. 2020; 52(2):484–489. doi:10.1249/ MSS.0000000000002131.
32. Henneman E, Olson CB. Relations between structure and function in the design of skeletal muscles. J Neurophysiol. 1965; 28(3):581–98.
33. Fenwick AJ, Wood AM, Tanner BCW. Effects of cross-bridge compliance on the force-velocity relationship and muscle power output. PLoS One. 2017 Dec 28; 12(12):e0190335. doi: 10.1371 /journal.pone.0190335. PMID: 29284062; PMCID: PMC5746261.
34. Sugi H, Ohno T. Physiological Significance of the Force-Velocity Relation in Skeletal Muscle and Muscle Fibers. Int J Mol Sci. 2019 Jun 24; 20(12):3075. doi: 10.3390/ijms20123075. PMID: 31238505; PMCID: PMC6627110.
35. Zhi G, Ryder JW, Huang J, et al. Myosin light chain kinase and myosin phosphorylation effect frequencydependent potentiation of skeletal muscle contraction. Proc Natl Acad Sci U S A. 2005; 102(48):17519–17524. doi:10.1073/pnas.0506846102.
36. Kobsar D., Barden J. Contact time predicts coupling time in slow stretch- -shortening cycle jumps. J Strength Cond Res. 2011 25(1), 51–52.
37. Lanza MB, Balshaw TG, Folland JP. Is the joint-angle specificity of isometric resistance training real? And if so, does it have a neural basis?. Eur J Appl Physiol. 2019; 119(11–12):2465–2476. doi:10.1007/s00421-019-04229-z.
38. Turner AN., Jeffreys I. The stretchshortening cycle: proposed mechanisms and methods for enhancement. J Strength Cond Res. 2010, 17, 60–67.
39. Kubo K, Ikebukuro T, Maki A, Yata H, Tsunoda N. Time course of changes in the human Achilles tendon properties and metabolism during training and detraining in vivo. Eur J Appl Physiol. 2012; 112(7):2679–2691. doi:10 .1007/s00421-011-2248-x.
40. Pożarowszczyk B, Gołaś A, Chen A, Zając A, Kawczyński A. The Impact of Post Activation Potentiation on Achilles Tendon Stiffness, Elasticity and Thickness among Basketball Players. Sports (Basel). 2018; 6(4):117. Published 2018 Oct 12. doi:10.3390/sports 6040117
Copyright: Institute of Sport. This is an Open Access article distributed under the terms of the Creative Commons CC BY License (https://creativecommons.org/licenses/by/4.0/). This license enables reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the creator. The license allows for commercial use.
 
Quick links
© 2024 Termedia Sp. z o.o.
Developed by Bentus.